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Abstract

Following wildfires, the probability of flooding and debris flows increase, posing risks

to human lives, downstream communities, infrastructure, and ecosystems. In south-

ern California (USA), the Rowe, Countryman, and Storey (RCS) 1949 methodology is

an empirical method that is used to rapidly estimate post-fire peak streamflow. We

re-evaluated the accuracy of RCS for 33 watersheds under current conditions. Pre-

fire peak streamflow prediction performance was low, where the average R2 was

0.29 and average RMSE was 1.10 cms/km2 for the 2- and 10-year recurrence interval

events, respectively. Post-fire, RCS performance was also low, with an average R2 of

0.26 and RMSE of 15.77 cms/km2 for the 2- and 10-year events. We demonstrated

that RCS overgeneralizes watershed processes and does not adequately represent

the spatial and temporal variability in systems affected by wildfire and extreme

weather events and often underpredicted peak streamflow without sediment bulking

factors. A novel application of machine learning was used to identify critical water-

shed characteristics including local physiography, land cover, geology, slope, aspect,

rainfall intensity, and soil burn severity, resulting in two random forest models with

45 and five parameters (RF-45 and RF-5, respectively) to predict post-fire peak

streamflow. RF-45 and RF-5 performed better than the RCS method; however, they

demonstrated the importance and reliance on data availability. The important param-

eters identified by the machine learning techniques were used to create a three-

dimensional polynomial function to calculate post-fire peak streamflow in small

catchments in southern California during the first year after fire (R2 = 0.82;

RMSE = 6.59 cms/km2) which can be used as an interim tool by post-fire risk assess-

ment teams. We conclude that a significant increase in data collection of high tempo-

ral and spatial resolution rainfall intensity, streamflow, and sediment loading in

channels will help to guide future model development to quantify post-fire flood risk.
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1 | INTRODUCTION TO POST-FIRE
HAZARDS IN SOUTHERN CALIFORNIA

Anthropogenic climate change, human ignited fires, and increased fuel

loads resulting from decades of fire suppression in forested areas have

contributed to an increase in wildfire severity and occurrence in the

western U.S. (FRAP, 2018; Radeloff et al., 2005; Westerling

et al., 2006). These wildfires can significantly impact land cover and

soil properties (DeBano, 2000; Moody, 2012; Moody & Martin, 2001;

Neary et al., 2005; Rowe et al., 1949) and can pose risks to human

lives, valued assets, and ecosystems (Kinoshita et al., 2016; Shakesby

et al., 2016). Development in wildlands and at the wildland-urban

interface has further exacerbated the potential to impact communi-

ties. In California, extreme increases in peak streamflow after wildfire

contribute to catastrophic flooding and debris flows on steep alluvial

fan landforms that may be developed with suburbs and infrastructure.

For example, the Holy Fire (August 2018) burned about 94 km2 in

Orange County and Riverside County in California and affected over 1000

residents. Three months later, the Woolsey and Hill fires (November

2018) burned approximately 392 km2 in Los Angeles County and Ventura

County. Combined, these two fires resulted in three fatalities, eight non-

fatal injuries, and 1665 structures being destroyed. Quickly following these

wildfires (December 2018–February 2019), record amounts of rainfall

resulted in flooding and debris flows in the burned regions. During this

time, the Riverside County Fire Department ordered the evacuation of

300 homes. Furthermore, on 9 January 2018, while the Thomas Fire was

still burning, Santa Barbara County was impacted by post-fire debris flows

that killed 23 people, destroyed or damaged 558 structures, and caused

severe damage to infrastructure in Montecito and Carpinteria, California

(Kean et al., 2019; Lancaster et al., in press).

Federal, state, and local agencies rapidly assess burned watersheds

to produce timely emergency protection measures for nearby communi-

ties that may be in the immediate danger from elevated peak flows and

debris flows. Federal Burned Area Emergency Response (BAER) teams

and California State Watershed Emergency Response Teams (WERTs)

are reliant on modelling to make informed decisions (Foltz et al., 2009)

following field verification of soil burn severity categories (Parsons

et al., 2010). The models used to predict these processes have varying

degrees of sophistication (Cannon et al., 2004; Kinoshita et al., 2014;

Robichaud et al., 2007). Debris flows, debris yields, and surface erosion

estimates are based on either numerical modelling (Water Erosion Pre-

diction Project derivatives) or relatively robust empirical models, where

the independent variables are consistent with our physical understanding

of geomorphic processes (Gartner et al., 2014; Robichaud et al., 2011;

Staley et al., 2017). WERTs and BAER teams inventory values-at-risk

(VARs) and suggest emergency protection measures that can be rapidly

implemented, including early warning system use, storm patrol, structure

protection with sandbags or K-rails, channel clearance work near cross-

ings, signage to close low water crossings, parks and trails, and road

crossing upgrades (Foltz et al., 2009). Emergency response teams also

rapidly communicate VAR locations and emergency protection measures

to local agencies such as county department of public works and flood

control districts for implementation.

Accurate predictions of post-fire peak streamflow rates are critical

for key emergency response and management agencies such as the

California Department of Forestry and Fire Protection (CAL FIRE), Cali-

fornia Department of Conservation-California Geological Survey (CGS),

the U.S. Forest Service (USFS), and local county flood control districts

especially under changing climate and wildfire regimes. Peak fire season

in southern California occurs in the fall, creating a short period between

fire and winter storms that produce flood events. This pattern requires

effective hazard evaluation to minimize risk for downstream communi-

ties, infrastructure, and ecosystems. Further, evidence suggests that

California's peak fire season could be shifting later in the year to

November–December due to climate change affecting coastal tempera-

ture, air pressure, and humidity (N. L. Miller & Schlegel, 2006). This

emphasizes the urgency for federal, state, and local agencies to rapidly

assess burned watersheds and produce timely emergency protection

measures for nearby communities.

Post-fire peak streamflow can exceed unburned peak streamflow by

three orders of magnitude during similar pre-fire storm events (Moody &

Martin, 2001; Wagenbrenner, 2013; Wohlgemuth, 2016). In southern

California, there is substantial reliance on the look-up-tables (LUTs)

developed by Rowe et al. (1949) to predict post-fire peak flows. This sim-

pler method is well understood and convenient for rapid assessment in

comparison to more complex process-based hydrologic models, and

therefore, is the most widely used method for rapidly predicting post-fire

peak flow rates in southern California (Kinoshita et al., 2014). Notable

fires such as the 2003 Old and Grand Prix Fires, 2009 Station Fire, 2018

Holy Fire, 2018 Woolsey and Hill fires, 2019 Saddle Ridge Fire, and

2019 Cave Fire have utilized the Rowe, Countryman, and Storey (RCS)

methods for post-fire peak streamflow predictions (e.g., Biddinger

et al., 2003; Moore et al., 2009; WERT, 2018a, 2018b, 2019a, 2019b). It

is hypothesized that the RCS model does not accurately predict post-fire

peak streamflow at the small to medium watershed scale (1 to 50 km2), a

common scale needed for post-fire risk assessment.

Building upon the significant advances in post-fire hydrology since the

development of RCS, there is an opportunity to improve current methodol-

ogies for prediction of peak streamflow in small watersheds. In particular,

machine learning techniques can be used for post-fire applications (Saxe

et al., 2018; Schmidt et al., 2020). Saxe et al. (2018) utilized machine learn-

ing to study a vast area with varying watershed scales. Our study focuses

on small to medium-sized watersheds ranging from 1 to 42 km2 to reduce

error associated with scaling, and to improve regional responses when

using machine learning. To evaluate and improve the accuracy of decision

support tools for post-fire hazard prediction and management in southern

California, we 1) assess the validity of the RCS method using observed pre-

and post-fire peak streamflow, 2) identify important parameters that can

improve the characterization of post-fire responses using machine learning,

and 3) present an analytical tool for post-fire risk assessments.

2 | STUDY AREA

The study area is within the Transverse Ranges and Peninsular

Ranges, which are geomorphic provinces with a wide topographic

2 WILDER ET AL.



range from sea level to 3506 m (CGS, 2002). The study area straddles

the southern California Coastal and southern California Mountain and

Valleys ecoregions (Cleland et al., 2007). Approximately 60%–70% of

these ecoregions are dominated by shrubland (e.g., chaparral) vegeta-

tion types, with a lesser proportion occupied by grassland and wood-

land or forest vegetation types (FRAP, 2015). The median pre-

settlement fire return intervals for these vegetation types are variable,

ranging on average from approximately 60 to 100 years for chaparral

and coastal scrub vegetation types (Van de Water & Safford, 2011).

This research investigated 33 small- to medium-sized watersheds with

drainage areas ranging between 1.2 to 41.7 km2 (Figure 1; Table 1).

2.1 | Regional geology

The Transverse Ranges are characterized by a 480-km long east–

west-trending series of steep mountain ranges, which include the

Santa Ynez, San Gabriel, and San Bernardino mountains in the study

area. They are underlain by diverse rock types of different ages. Older

Precambrian to Cretaceous metamorphic and igneous rocks underlie

the western San Bernardino and central San Gabriel mountains

(CGS, 2018). In contrast, the Santa Ynez Mountains are underlain by

younger marine and continental sedimentary sequences of sandstone,

siltstone, and shale, deposited during late Cretaceous and Cenozoic

times (CGS, 2018).

The Peninsular Ranges are characterized by a series of

northwest-trending mountain ranges, including the Santa Ana, San

Jacinto, and Laguna mountains, having generally lower average eleva-

tion than the Transverse Ranges. They are characterized by igneous

and metamorphic rocks of Mesozoic age, including granite in the east

and volcanic and metasedimentary rocks in the west (CGS, 2018;

Harden & Matti, 1989).

Mountain ranges in these provinces have steep canyons with

active hillslope processes including shallow and deep-seated land-

slides, rockfall, and debris flow initiation. Pleistocene- and Holocene-

age alluvial and debris fan landforms deposited at the mountain front

F IGURE 1 Study area consisted of 33 watersheds in 6 different regions within the Transverse Ranges and Peninsular Ranges in southern
California, USA
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throughout these provinces demonstrate dominant watershed runoff

and sedimentation processes ranging from sediment-laden stream

flows to debris flows.

At the catchment scale, many geologic factors control sediment

availability in the region. These include rock type (lithology), structure,

presence of landslides, weathering characteristics, elevation, slope,

TABLE 1 Study watershed characteristics (name, size, wildfire, and burn severity) by region, where burn severity is categorized by Unburned-
Low (Un-Low), moderate (Mod), and high (High)

Watershed Name (RCS Table No.) Size (km2) Wildfire (% Burned Area) Un-Low (%) Mod (%) High (%)

San Bernardino Mountains

Devil (60) 14.2 2003 Old (97%) 50% 31% 19%

East Twin Creek (57) 22.6 2003 Old (98%) 50% 31% 19%

Waterman (58) 11.9 1980 Panorama (86%) n/a n/a n/a

Santa Ynez Mountains

Maria Ygnacio (204) 16.6 1990 Painted Cave (52%) 65% 26% 9%

Franklin (188) 6.9 1971 Romero (56%) n/a n/a n/a

Coyote (183) 33.9 1985 Wheeler (98%) 39% 33% 28%

Mission (200) 17.1 2009 Jesusita (69%) 60% 32% 8%

San Jose (205) 14.4 1955 Refugio (69%) n/a n/a n/a

Carpinteria (187) 33.9 1971 Romero (84%) n/a n/a n/a

Santa Ana (182) 24.2 1985 Wheeler (100%) 39% 33% 28%

Romero (193) 5.14 2017 Thomas Fire (94%) 59% 39% 2%

Toro (190) 2.33 2017 Thomas Fire (94%) 59% 39% 2%

Arroyo Paredon (191) 2.22 2017 Thomas Fire (83%) 59% 39% 2%

San Jacinto Mountains

Snow (85) 27.9 1973 One Horse (37%) n/a n/a n/a

Andreas (82) 22.4 1980 Dry Falls (92%)

2013 Mountain Fire (67%)

n/a

49%

n/a

49%

n/a

2%

San Gabriel Mountains

Little Santa Anita (136) 4.8 1954 Monrovia Peak (100%) n/a n/a n/a

Sawpit (131) 13.7 1924 San Gabriel #2 (73%) n/a n/a n/a

Fish (129) 18.3 1968 Canyon Inn (100%) n/a n/a n/a

Lower Big Dalton (117) 18.8 1919 San Gabriel (100%) n/a n/a n/a

Haines (145) 3.3 1933 La Crescenta (51%) n/a n/a n/a

Arroyo Seco (141) 41.7 2009 Station (100%) 34% 38% 28%

Santa Anita (137) 25.2 1954 Monrovia Peak (97%) n/a n/a n/a

Santa Ana Mountains

Horsethief (35) 5.6 2018 Holy (100%) 15% 71% 14%

Indian (35) 7.3 2018 Holy (100%) 15% 71% 14%

Rice (35) 5 2018 Holy (100%) 15% 71% 14%

Dickey (34) 1.2 2018 Holy (98%) 15% 71% 14%

Coldwater (36) 10.7 2018 Holy (99%) 15% 71% 14%

Agua Chinon (32) 7.1 2007 Santiago (92%) 61% 28% 11%

Santiago (32) 32.3 2007 Santiago (70%) 61% 28% 11%

San Diego County

Los Coches (14) 31.6 2003 Cedar (57%) 24% 24% 52%

Pechanga (28) 34.6 2000 Pechanga (45%) 32% 34% 34%

Fallbrook (27) 18.3 2014 Tomahawk (59%) 42% 52% 6%

Rainbow (27) 26.7 2007 Rice (20%) 75% 17% 8%

Note: Note that burn severity data collected from monitoring trends in burn severity (MTBS) are not available for fires prior to 1984, which are indicated

by n/a.
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and tectonic history (DiBiase & Lamb, 2020; Lavé & Burbank, 2004;

Scott & Williams, 1978). Rock to regolith conversion is rapid in the

study area, thus, shallow landslides, dry ravel, and rill erosion after

wildfire may dominate the sediment supply. Conversely, where rego-

lith conversion is slow, deep-seated landslides may dominate hillslope

processes with landslide deposits and their over-steepened source

areas as primary sediment sources. To represent this in our model, soil

erodibility factors and landslide susceptibility maps were used as

parameters for analysis.

2.2 | Climate and wildfire

The Transverse Ranges and Peninsular Ranges experience some of the

highest storm precipitation totals in the nation (Dettinger, 2011;

O'Connor & Costa, 2004; Ralph & Dettinger, 2012). Further, the unique

east–west alignment of the Transverse Ranges relative to the Pacific

Ocean translates to large amounts of orographic precipitation from

atmospheric rivers, where 10%–30% of the annual precipitation can

originate from one large storm (Lamjiri et al., 2018) during cool season

months of November–April (Dettinger, 2011; Neiman et al., 2008).

Multi-year drought interspersed with, or followed by, extreme

precipitation or wetter than average years are common in the area, a

pattern conducive to growth and then desiccation of the region's fire-

prone vegetation. The combination of steep and complex terrain,

combustible fuels, prolonged dry seasons, and strong Santa Ana wind

events produce the most intense fire climate in the United States

(Keeley et al., 2004; Raphael, 2003; Wells, 1987; Wells II., 1981). Fur-

ther, population growth proximal to wildlands means that much of

southern California has experienced higher fire frequency relative to

pre-settlement return intervals (Safford & Van de Water, 2014;

Syphard et al., 2007).

While southern California's chaparral and forested ecosystems

are fire-adapted, climate change is predicted to increase mean annual

burned area by 42% for forests in the San Gabriel Mountains under

RCP 8.5 scenario (Representative Concentration Pathways) between

the initial period of 1950 to 2005 and the projected period of 2006 to

2099 (https://cal-adapt.org/). One study observed no apparent

increase in summer wildfire in non-forested areas between 1972 to

2018, however, observed a slight increase in fall wildfire probability

due to atmospheric aridity (Williams et al., 2019), which is exemplified

by the fall fires in 2017 and 2018, including the 2017 Thomas Fire,

the largest wildfire documented in southern California.

2.3 | Post-fire processes

The regional climatology, geology, soils, and vegetation in southern

California equates to an unmatched magnitude of post-fire

hydrogeomorphic response (Moody et al., 2013). Examples of extreme

impacts include the 1934 New Year's Day debris flow in the La

Crescenta area (Chawner, 1935); the 1981 Mill Creek disaster in the

San Gabriel Mountains (Shuirman & Slosson, 1992); the December

25th debris flows following the 2003 Old Fire (Cannon &

DeGraff, 2009); and, hyperconcentrated flood flows following the 2018

Holy Fire causing damage to homes, flood control facilities, and highway

infrastructure in (and below) the Santa Ana Mountains. For example,

observed hyperconcentrated flood flow velocities varied greatly by

watershed during the 29 November 2018 storm following the 2018 Holy

Fire with flows at Dickey Canyon producing a flow velocity of approxi-

mately 12 m/s, Rice, Horethief, and Indian Canyons producing flow

velocities between 5–8 m/s, and Coldwater Canyon producing a flow

velocity of approximately 3 m/s. Short duration, high intensity precipita-

tion produced from atmospheric rivers and orographic lift is a key factor

that generates flash floods and debris flows after wildfire (Cannon

et al., 2008; Moody et al., 2013; Oakley et al., 2017). Moreover, precipi-

tation intensity is anticipated to increase about 7% per degree Celsius of

warming, suggesting a potential increase of flash flood and debris flow

magnitude after wildfire in a changing climate (Prein et al., 2017).

In southern California, the dominant vegetation types covering the

hills and lower mountain slopes are the chaparral and scrub brushes. Fur-

ther, the closed canopy nature of these vegetation types means that

large scale, stand-replacing fires are common (Keeley, 2009). After stand-

replacing fires on steep slopes, dry ravel increases, with much of it deliv-

ered directly into the channel network resulting in large increases in sedi-

ment yield and/or the frequency of debris flows (DiBiase & Lamb, 2020).

Since post-fire runoff reflects a continuum between clear water flow and

debris flows (non-Newtonian fluid), the recognition of these linked pro-

cesses is vital for understanding the fire-flood cycle in southern Califor-

nia (Travis et al., 2012). The well-established linkage between chaparral

vegetation and the development of soil water repellency (DeBano, 2000;

Doerr et al., 2000) influences infiltration, runoff, and erosion (Doerr

et al., 2009). Soil water repellency and soil erosion are enhanced with

increasing soil burn severity (Huffman et al., 2001; Lewis et al., 2006)

due to changes in mechanical and hydraulic properties such as changes

in relative density, saturated hydraulic conductivity, and sorptivity

(Shakesby et al., 2016). Thus, soil burn severity is crucial for modelling of

hydrologic response after wildfire in southern California.

3 | METHODS

3.1 | Data

To develop the random forest (RF) (Breiman, 2001) algorithm to char-

acterize historical post-fire peak streamflow in southern California,

45 watershed parameters (Table S1) were derived from local and

national data bases. These sources included streamflow records from

the United States Geological Survey (USGS), hourly precipitation data

from National Oceanic and Atmospheric Administration (NOAA), the

average annual precipitation (USGS StreamStats), burn perimeters and

severity from Monitoring Trends in Burn Severity (MTBS), soils data

from the USDA Natural Resources Conservation Service's Soil Survey

Geographic Database (SSURGO), land cover data from the National

Land Cover Database (NLCD), and digital elevation models (DEM)

from USGS Elevation Products. Selection of these parameters were
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based on a review of studies that directly linked the effects of specific

parameters on pre- and post-fire processes. Some of the datasets

were not available for all post-fire events, specifically, burn severity

datasets were only available after 1984.

3.2 | Performance measurements

To measure model performance, the following statistics were used to

estimate the bias, root mean squared error (RMSE), and coefficient of

determination (R2):

Bias =
1
n

Xn

i=1
Pi−Oið Þ ð1Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i=1

Pi−Oið Þ2
n

,

s
ð2Þ

where n is the number of watersheds, i is the i-th watershed, Oi is

observed peak streamflow for i-th watershed, and Pi is predicted peak

streamflow for i-th watershed. Positive bias represents an overprediction

and a negative bias represents an underprediction. Higher RMSE values

are associated with higher error than those with lower RMSE values.

R2 = 1−
Pn

i=1 eið Þ2Pn
i=1 yi−�yð Þ2

, ð3Þ

where ei is error at point i, yi known streamflow at point i, and yc is

average streamflow. Higher R2 values that are closer to 1, or equal to

1, represent higher agreement between the predicted and observed

values.

3.3 | Peak streamflow modelling methods

3.3.1 | Flood frequency of historical flows

RCS-derived pre- and post-fire predictions were compared to histori-

cal streamflow records. The observed peak streamflow values are

based on statistical distributions and not individual observations.

Weibull and PeakFQ were used to estimate flood frequency for exis-

ting streamflow records (Clarke, 2002; Flynn et al., 2006). Weibull is a

generalization of the exponential distribution to calculate peak

streamflow for different flood frequencies:

T =
n+1
m

, ð4Þ

where T is return period in years, n, is the number of data points and,

m, is the rank of highest annual streamflow. The Peak FQ program

was developed by the USGS and utilizes a log-Pearson Type III distri-

bution to model flood frequencies, based on Bulletin 17C (Parrett

et al., 2011) procedures:

logQ= �x + S× k, ð5Þ

where logQ, is the logarithmic peak streamflow, xc, is the sample loga-

rithmic mean, S, is the sample logarithmic SD and, k, is the station

skew coefficient (Flynn et al., 2006). The average percent difference

between Weibull and PeakFQ results were 33% for the 2-year return

period and 41% for the 10-year return period. The two methods were

averaged to form a statistical representation of the observed peak

streamflow for each watershed for the 2- and 10-year return periods.

3.3.2 | Rowe, Countryman, and Storey

Rowe et al. (1949) undertook extensive observations across

southern California watersheds (Mexican border to San Luis

Obispo) and developed relations for size of peak streamflow

events and erosion rates associated with normal (unburned) con-

ditions for 256 watersheds within five climatic zones. Relations

were established between storm precipitation and post-fire peak

discharge for watersheds from the years 1869 to 1949 in each

specific storm zone. It should be noted that several large storm

events occurred after 1950 that were not recorded during the

RCS study, which would have likely influenced the model signifi-

cantly. The changes in these flows for subsequent post-fire years

were determined and are the basis for the 256 LUTs. Since dis-

charge measurements were not available for all watersheds, rating

curves were established for each storm zone considering size,

shape, steepness, stream channel characteristics, infiltration and

water storage capacities of various soil-geologic formations, pre-

cipitation, and vegetation characteristics (Rowe et al., 1949). Each

of the 256 tables were adjusted according to percent burnable

area and vegetation density, and includes post-fire streamflow

predictions for 1, 2, 3, 7, 15, 30 and 70 years (normal) after burn-

ing. The San Bernardino storm zone is the only region where RCS

includes the influence of snowpack in streamflow estimates.

The RCS normal and burned peak streamflow estimates for the

33 watersheds were compared to the logarithmic means of the basic

frequency classes (tables A and B of Rowe et al., 1949). A Savitzky–

Golay function (Orfanidis, 1996) was used to remove noise from the

data and to create a smooth curve for the storm frequency relation-

ship. Data were plotted for 1, 2, 3, 7, 15, 30 and 70 years after the

fire. Power functions were fitted to these relationships, where R2

values were greater than 0.95, with the form:

Q= a× pb, ð6Þ

where Q is the predicted peak streamflow from RCS, a and b are coef-

ficients, and p is the exceedance probability. Also, the RCS 1949 linear

function was used to calculate the effect of partial burn on peak

streamflow by proportioning with the percent of burnable area.

The 2- and 10-year recurrence interval predictions to assess water-

sheds are typically used by WERT and BAER teams because there is more

confidence in flood flow prediction methods at smaller recurrence intervals
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compared to larger intervals such as 25-, 50- 100-year (Kinoshita

et al., 2014). Additionally, the recovery period for local vegetation in southern

California is typically 2–7 years, which influences the hydrologic response

(Bell et al., 2009; Keeley & Keeley, 1981; Kinoshita & Hogue, 2011). Thus,

our post-fire predictions were derived from available streamflow observa-

tions collected within the first 7 years after fire for all of the watersheds.

3.3.3 | Random forest post-fire model

Random forests (RF) are an effective machine learning (ML) tool for predic-

tion, both in classification problems and regression (Breiman, 2001). We

developed two random forest models to predict post-fire peak streamflow.

The MATLAB R2019a RF TreeBagger function combines the results of

many decision trees (without replacement) and was used to build a regres-

sion based on the 45 watershed parameters, RF-45. The sample size was

increased from 33 to 74 by selecting one to three post-fire storm events

for each watershed. In general, tree-structured classifiers are indepen-

dently distributed and explore different class conditions at each input.

One of the main advantages of random forest is reproducibility and high

transparency of feature importance. Random forests' feature importance

is easy to interpret directly from the model, allowing conclusions to be

drawn for the impact of different watershed parameters on the accuracy

of predictions. TreeBagger also requires a low amount of hyperparameter

tuning and the features do not need to fit a normal distribution, which is

present in post-fire peak flow data. However, a common issue when build-

ing an RF model is the tendency for models to over-fit to the data, trans-

lating to a smaller variance in the predictions. This can occur if there are

too many features in the regression, which falsely implies that the model is

predicting perfectly. TreeBagger helped to reduce overfitting of data by

using Bootstrap-aggregated (bagged) decision trees, which combined the

results of many decision trees, where the Strong Law of Large Numbers

applied (Feller, 1968; Pal, 2005). We also filtered out redundant or

unimportant parameters, resulting in a multi-variable model with only five

important parameters to predict post-fire peak streamflow (RF-5). RF-5

was validated using a k-fold cross validation with k = 5. The accuracy of

both random forest models were assessed for each region and each

watershed by using root mean squared error and coefficient of determina-

tion [Equations (2) and (3)] to evaluate model performance in comparison

to observed streamflow data. The most important parameters identified

by ML were also used to create a regression model using a three-

dimensional polynomial function.

4 | RESULTS

4.1 | Rowe Countryman and Storey

4.1.1 | RCS performance before fire

Only 24 of the 33 watersheds had observed pre-fire streamflow,

which are shown as streamflow per unit area for the 2- and 10-year

recurrence interval events (Figure 2). Pre-fire, RCS over-predicted the

2-year return period for 17 of the watersheds and under-predicted the

10-year return period for 18 of the watersheds. In total, the 2-year

return period had a positive bias of 0.162 cms/km2 and the 10-year

return period had a negative bias of −0.791 cms/km2 (Table 2). There

was substantial variation between watersheds that the RCS method did

not represent. For example, the SD for the RCS 10-year return period

was 0.31 cms/km2, while the SD of the observed 10-year return period

was 1.28 cms/km2 (Figure 2). The Santa Ynez region had the lowest

accuracy by region for the 10-year return period, bias = −2.362 cms/

km2, and Franklin Canyon, within the Santa Ynez region, had the lowest

accuracy for all watersheds, where 10-year return period peak flow

was under-predicted by a factor of 4.75. Overall, pre-fire peak

streamflow prediction performance was low for the 2- and 10-year

recurrence interval events (R2 = 0.24 and RMSE = 0.38 cms/km2;

R2 = 0.34 and RMSE = 1.43 cms/km2, respectively).

4.1.2 | RCS performance after fire

For 10-year return period post-fire predictions, 22 watersheds experi-

enced flooding during the first 5 years after fire and were under-

predicted by RCS. When comparing observed post-fire flow directly to

the probabilistic predictions, we found R2 and RMSE for RCS 2-year

return periods yielded 0.26 and 16.01 cms/km2, and R2 and RMSE for

RCS 10-year return periods yielded 0.25 and 15.52 cms/km2, respec-

tively. Predictions generally had largely negative bias with 2-year return

periods yielding bias of −8.68 cms/km2 and 10-year return periods yield-

ing bias of −7.78 cms/km2. Regionally, it was noted that 13 watersheds

observed post-fire peak streamflow larger than the RCS 100-year predic-

tion. Watersheds in the San Diego and San Jacinto regions on average

had 149% lower post-fire peak streamflow compared to the other

regions. Predictions for watersheds in the Santa Ynez, San Gabriel, San

Bernardino, and Santa Ana mountains were inaccurate, with errors rang-

ing up to 1720% during the floods at Dickey Canyon that followed the

2018 Holy Fire (Figure 3). These flows were rapid, where field observed

velocity was measured to be approximately 12 m/s.

4.2 | Random forest post-fire model performance

The RF-45 TreeBagger function identified the following parameters as

the most important for predicting post-fire peak streamflow for the

study area (in order of importance): days elapsed from end of fire

(containment date) to storm, total area of watershed burned, water-

shed drainage area, watershed perimeter, and peak 1-hour rainfall

intensity (Figure S1). A second RF model was developed using only

the five most important parameters. This resulted in a model that

could be adequately represented with five parameters, therefore elim-

inating the issue of model overfitting (Figure 4). The RF-45 (R2 = 0.79

and RMSE = 7.34 cms/km2) and RF-5 models (R 2 = 0.46 and

RMSE = 7.89 cms/km2) performed better than the RCS method.

Accuracy decreased substantially when peak streamflows were

above 10 cms/km2, most likely due to uncertainty caused by debris
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flows and hyperconcentrated flows. The Santa Ynez region had the

highest R2 compared to the other regions (Bias = −1.77 cms/km2;

R2 = 0.93; RMSE = 7.99 cms/km2). This region also had the largest

sample size in our study (n = 27) and the largest amount of available

precipitation data to train the RF model.

Additionally, we compared the performance of RCS and RF-5

for the largest post-fire floods for each of the 33 watersheds

between 1920–2018 (Figure 5). The RCS 2-year and RCS 10-year

RMSE values were 16.01 cms/km2 and 15.52 cms/km2, respec-

tively, while the RF RMSE was found to be lower at

10.41 cms/km2.

4.3 | Towards an analytical solution for assessing
post-fire peak flows

In June 2020, 65 out of 116 researchers and professionals in fire sci-

ence prioritized “assessing and mitigating flash flood and debris flows

hazards” over “burn area recovery” (n = 31), “water quality impacts”
(n = 17), and “invasive species and/or changes in fire regime” (n = 3)

(Coalitions, & Collaboratives, Inc., 2020). This motivated the develop-

ment of a simple analytical solution for assessing immediate responses

for post-fire peak flows in small watersheds. The most important

parameters identified by RF-45 were time after fire (used to distin-

guish events within the first year), rainfall intensity, and burned area;

they were used to create a simple regression (Figure 6). Thirty-one

rainfall-runoff events during the first year after fire from the study

area were fitted to a three-dimensional polynomial function

(R2 = 0.82) with the equation:

Qpk = −8:316+0:4033 Að Þ+0:9041 i60ð Þ−0:04079 Að Þ i60ð Þ

+0:0127 i60ð Þ2, ð7Þ

where Qpk is peak streamflow (cms/km2), A is burned area (km2), and

i60 is peak hourly rainfall intensity (mm/h). Watershed area and

watershed perimeter were not used for the regression. On average,

burn proportions consisted of 56% moderate to high soil burn severity

and 44% unburned to low soil burn severity.

F IGURE 2 Rowe, Countryman, and
Storey (RCS) unburned peak streamflow
predictions compared to observed peak
streamflow for 2-year (a) and 10-year
(b) return periods

TABLE 2 Rowe, Countryman, and Storey (RCS) bias for peak
streamflow predictions by region for the 2- and 10-year events

RCS Bias (cms/km2)

Region Q2 Q10

San Bernardino (n = 3) 0.551 0.371

Santa Ynez (n = 7) −0.238 −2.362

San Jacinto (n = 2) 0.134 −0.237

San Gabriel (n = 6) 0.346 0.230

Santa Ana (n = 2) 0.237 −0.188

San Diego (n = 4) 0.272 −0.276

Southern California (n = 24) 0.162 −0.791

Note: Return periods were calculated from at least 21 years of peak flow

data and n represents the number of watersheds.
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5 | DISCUSSION

5.1 | The future role of Rowe, Countryman, and
Storey

RCS is commonly used in southern California after wildfire to model

flood risk for affected watersheds. In this study, RCS had large inaccu-

racy for small to medium-sized watersheds (1 to 42 km2). This could

be due to a multitude of factors including watershed morphology,

exclusion of soil burn severity, greater development in the wildland-

urban interface, and increasing frequency in extreme weather events

due to climate change. RCS had the largest inaccuracies for water-

sheds in the Santa Ynez Mountains, which is of concern due to the

tendency for hazardous (Sections 2.1–2.3) events in this region, such

as the 9 January 2018 Montecito debris flows (Kean et al., 2019). RCS

regressions were developed for flows with low sediment concentra-

tions (non-bulked flows), therefore, RCS predictions are expected to

be limited and unable to predict peak flows associated with debris

flows. In comparison to clear water flows, which generally have

suspended-sediment concentrations less than 5% to 10% sediment by

volume, hyperconcentrated flows can have suspended-sediment con-

centrations from 5% to 60% sediment by volume, and debris flows

can have suspended-sediment concentrations greater than 60% sedi-

ment by volume (Pierson, 2005). Accurate predictions of post-fire

streamflow along the continuum from flooding to debris flows are

needed due to their frequent occurrence following wildfire in south-

ern California (Cannon & DeGraff, 2009).

Significant advances in post-fire hydrology since the development

of Rowe et al. (1949) should be incorporated to improve the accuracy

of predictions (Kinoshita et al., 2014). For example, sediment bulking

is implicit in RCS, yet independent variables that are strongly linked to

sediment production or sediment yield are not used. Additionally, this

observation-based method predates development of the soil burn

severity metric. Soil burn severity characterizes the fire-induced

changes in soil and ground cover properties that can affect infiltration,

runoff, and erosion potential (Parsons et al., 2010) and is incorporated

F IGURE 3 Sediment-laden flows and high water mark observations in a concrete lined channel at Toft Dr. near the outlet of Dickey Canyon
during 29 November (a and b) and 6 December 2018 storms (c). The December 6 peak flow filled the channel (c) and resulted in damage at outlet,
where flow exceeded the culvert capacity (d). Photos a and c were extracted from videos provided by Riverside County Flood Control and Water
Conservation District personnel and by resident S. Engelhardt, respectively

F IGURE 4 Predictions for the RF-5 random forest model by
region. The sample size (n) is noted for each region
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in post-fire hydrogeomorphic modelling as an independent variable to

predict debris flows and debris yield (Gartner et al., 2014; Staley

et al., 2017).

Pre-fire RCS SDs between watersheds (0.17–0.31 cms/km2) were

smaller than the observed estimates (0.35–1.28 cms/km2), indicating

that RCS predicted less variation than was actually present. This dis-

parity between the SDs highlights the insensitivity of RCS predictions

to different conditions between watersheds, and ultimately, contrib-

utes to additional error in post-fire predictions. The post-fire RCS

method utilizes “fire factors” that modify pre-fire flow. This discrep-

ancy is illustrated in our post-fire predictions of the Santa Ynez

region.

Many of the spatially and temporally sensitive parameters such as

rainfall intensity and soil burn severity are not adequately represented

in the RCS 1949 method. The limitations of RCS are attributed to its

conceptualization prior to the development of the Geographic Infor-

mation System (GIS). While, RCS rating curves were developed using

basin size, shape, steepness, stream channel characteristics, infiltration

and water storage capacities of various soil-geologic formations, pre-

cipitation, and vegetation characteristics (Rowe et al., 1949), these

datasets were based on hand-drawn maps, field observations, and

other historical records with lower spatial and temporal resolution.

Further, RCS used a flood frequency technique that assumes a static

landscape and climate; however, these assumptions are not valid

under dynamic climate (Milly et al., 2008). For example, studies such

as Musselman et al. (2017) and Prein et al. (2017) note that climate is

not stationary, where earlier onset of snowmelt, increased air and

water temperature, and increased frequency of extreme weather

events can directly impact surface runoff. Therefore, a statistical,

flood frequency approach to post-fire modelling, or a model that uses

return periods and probabilities of occurrence such as RCS, will

decrease in reliability over time, eventually rendering it irrelevant for

future post-fire risk assessment in southern California.

5.2 | Role of machine learning as a tool for post-
fire risk assessment

The parameters presented in this study (see Data Availability State-

ment) are essential in characterizing post-fire response in small south-

ern California watersheds, however, this list is not exhaustive and

potentially misses other important parameters. For example,

15-minute and 30-minute peak rainfall intensities, vegetation density,

vegetation type, soil moisture, fault boundaries, sediment availability

in the channels, relative humidity, and drought and climate variations,

were not investigated (DiBiase & Lamb, 2020). Also, RF-45 did not

determine soil burn severity to be an important parameter, which is

contrary to several studies that note the importance of soil burn

severity in triggering large post-fire peak flows (Gartner et al., 2014;

Huffman et al., 2001; Lewis et al., 2006; Moody, 2012; Shakesby

et al., 2016; Staley et al., 2017). This discrepancy is likely due to the

lack of soil burn severity data for our modelling exercise. Soil burn

severity was not available for 35 of the 74 rainfall-runoff events,

F IGURE 6 Modelled regression
for small, steep catchments during the
first year after fire in southern
California, fitted to historic high flows
within the first year after wildfire
collected from 1920–2019. This
model is limited to watersheds ranging

between 1 to 20 km2 where more
than half of the watershed has been
burned at moderate to high soil burn
severity

F IGURE 5 Observed peak streamflow versus predicted
streamflow response. The black line represents a perfect prediction.
Squares represent RCS (2- and 10-year events) and triangles
represent random forest with the five most important parameters
(RF-5). RF-5 is based on the entire training dataset and has no
affiliated event magnitude. The extreme conditions or the highest
floods for each watershed are shown (n = 33)
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limiting the model's ability to identify the importance of severity. This

reinforces the need and importance for consistent collection of field

data, particularly high temporal resolution rainfall intensity, soil burn

severity mapping, and streamflow data (Staley et al., 2013) to improve

the contributions of ML in post-fire hydrologic predictions.

There is significant research that demonstrates the importance of

high temporal resolution rainfall data (e.g., 5-, 15-, and 30-minute rain-

fall intensities) initiating debris flows and associated high peak flows

(Staley et al., 2013). This study focused on data that were open access

(60-minute rainfall intensity). Further, only one rain gauge was used as

a representative rainfall measurement for each watershed, which may

contribute to uncertainty in the RF-5, RF-45, and polynomial regression

predictions. There are also inherent errors in the measured post-fire

peak streamflow, which may have been heavily laden with soil, ash,

burned vegetation, large boulders, and other debris (i.e., significantly

bulked flow).

This study suggests that with sufficient high-quality data,

machine learning can be a valuable procedure for developing predic-

tive tools for post-fire risk assessment. For example, the Santa Ynez

region had the largest sample size and the most available rainfall

data, resulting in the highest R2 by region for RF-5 (n = 27;

Bias = −1.77 cms/km2; R2 = 0.93; RMSE = 7.99 cms/km2). Further,

machine learning requires data collection, calibration, and parameter-

ization that should be carried out cautiously. Excluding or missing

parameters that have significant importance to model accuracy can

lead to highly inaccurate predictions due to insufficient processes

being defined by the data.

5.3 | Factors influencing post-fire peak streamflow

Based upon our ML approach, peak rainfall intensity, watershed size,

and time after fire containment have a significant role in determining

flow rate per unit area after wildfire (Figure 7). We observed that

peak hourly rainfall intensities over 10 mm/h led to larger magnitude

floods (Figure 7(a)). These findings may be due to physical watershed

processes, whereby larger peak rainfall intensities increase rill ero-

sion and channel incision (Cannon & DeGraff, 2009). Watersheds

with smaller areas (1–10 km2) are more likely to have larger magni-

tude runoff per unit area (p < 0.05) (Figure 7(b)), which is similar to

Neary et al. (2005). In smaller watersheds with predominantly chap-

arral vegetation type, runoff responses are erratic and have potential

to transport large amounts of sediment per unit area after fire (Keller

et al., 1997). Neary et al. (2005) also reported much larger magni-

tudes for small watersheds in Western United States (<1 km2),

where post-fire peak flows averaged 193 cms/km2, further highlight-

ing the increased potential for higher magnitude peak flows. Finally,

storms that occurred closer in time to the fire containment have a

higher likelihood of larger magnitude events (p < 0.05) (Figure 7(c)).

The passing of time allows hydrophobic soils to normalize and vege-

tation to recover, reducing rainfall impact on bare soil (Neary

et al., 2005).

5.4 | Analytical solution

Rapid assessment and accurate modelling of post-fire peak

streamflow are essential for effective risk management implementa-

tion. The use of RCS has persisted in emergency assessments despite

its shortcomings due to general acceptance, ease of use, and lack of a

better simplified model. Many current models require extensive data

acquisition, model setup and testing, and field calibration; these

models may generally work well but are not feasible under time con-

straints required by post-fire assessment teams and emergency man-

agement agencies to make rapid decisions for quantifying risk and

developing response measures. Thus, we advocate that more work is

needed to provide more data for validation and improve existing

methods and tools that better fit the current needs of post-fire

assessment teams and local agencies to quantify risk to downstream

communities, infrastructure, and ecosystems. Based on our regional

analysis using random forest (Figure 4; Figure S1), we propose a sim-

ple regression that can be used for peak streamflow estimates in post-

fire risk assessment for the first year after fire for watersheds

between 1 to 20 km2 in southern California [Figure 6; Equation (7)].

6 | CONCLUSION

Following wildfires in southern California, the probability of flooding

and debris flows increase, thus prompting the need for accurate

F IGURE 7 Observed peak streamflow per unit area with respect
to peak hourly rainfall intensities (a), watershed size (b), and days after
fire containment (c)
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prediction to protect downstream communities, infrastructure, and

ecosystems. Rowe et al. (1949) produced large inaccuracies for pre-

and post-fire peak streamflow predictions in small to medium-sized

watersheds (1 to 42 km2) in southern California. We suggest that RCS

should be used with extreme caution. We demonstrate the develop-

ment of two models using machine learning. We showed that RF-45

can identify relationships and characterize post-fire peak streamflow

of small watersheds. Through RF-45, it was discovered that days

elapsed from end of fire to storm, total area of watershed burned,

watershed drainage area, watershed perimeter, and peak 1-hour rain-

fall intensity are important parameters that contribute to greater

model accuracy. The RF-5 model built with these five parameters

(Bias = −2.81 cms/km2; R2 = 0.46; RMSE = 7.89 cms/km2) was more

accurate than the RCS Q2 and Q10 regressions (Bias = −8.68 –

−7.78 cms/km2; R2 = 0.26–0.25; RMSE = 15.52–16.01 cms/km2). A

simple analytical solution is introduced to provide post-fire assess-

ment teams an interim tool to rapidly predict peak floods for small

watersheds in southern California (Bias = −2.26 cms/km2; R2 = 0.82;

RMSE =6.59 cms/km2). We conclude that a significant increase in

data collection of high temporal and spatial resolution rainfall inten-

sity, streamflow, and sediment loading in channels will help to guide

future model development to quantify post-fire flood risk.
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